Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1298340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328302

RESUMO

Background: The rapid delayed rectifier potassium current (IKr) is important for cardiac repolarization and is most often involved in drug-induced arrhythmias. However, accurately measuring this current can be challenging in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes because of its small current density. Interestingly, the ion channel conducting IKr, hERG channel, is not only permeable to K+ ions but also to Cs+ ions when present in equimolar concentrations inside and outside of the cell. Methods: In this study, IhERG was measured from Chinese hamster ovary (CHO)-hERG cells and hiPSC-CM using either Cs+ or K+ as the charge carrier. Equimolar Cs+ has been used in the literature in manual patch-clamp experiments, and here, we apply this approach using automated patch-clamp systems. Four different (pre)clinical drugs were tested to compare their effects on Cs+- and K+-based currents. Results: Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. Comparison of Cs+- and K+-mediated currents upon application of dofetilide, desipramine, moxifloxacin, or LUF7244 revealed many similarities in inhibition or activation properties of the drugs studied. Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. In hiPSC-CM, the Cs+-based conductance is larger compared to the known K+-based conductance, and the Cs+ hERG conductance can be inhibited similarly to the K+-based conductance. Conclusion: Using equimolar Cs+ instead of K+ for IhERG measurements in an automated patch-clamp system gives rise to a new method by which, for example, quick scans can be performed on effects of drugs on hERG currents. This application is specifically relevant when such experiments are performed using cells which express small IKr current densities in combination with small membrane capacitances.

2.
BMC Med Educ ; 24(1): 115, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321518

RESUMO

INTRODUCTION: Medical undergraduate students receive limited education on scholarly publishing. However, publishing experiences during this phase are known to influence study and career paths. The medical bachelor Honours Program (HP) at Utrecht University initiated a hands-on writing and publishing course, which resulted in nine reviews published in internationally peer reviewed academic journals. We wanted to share the project set-up, explore the academic development of the participating students and determine the impact of the reviews on the scientific community. METHODS: Thirty-one out of 50 alumni completed a digital retrospective questionnaire on for example, development of skills and benefit for their studies and career. Publication metrics of the HP review papers were retrieved from Web of Science. RESULTS: This hands-on project provides a clear teaching method on academic writing and scholarly publishing in the bachelor medical curriculum. Participants were able to obtain and improve writing and publishing skills. The output yielded well-recognized scientific papers and valuable learning experiences. 71% of the participating students published at least one additional paper following this project, and 55% of the students indicated the project influenced their academic study and/or career path. Nine manuscripts were published in journals with an average impact factor of 3.56 and cited on average 3.73 times per year. DISCUSSION: This course might inspire other medical educators to incorporate similar projects successfully into their curriculum. To this end, a number of recommendations with regard to supervision, time investment and group size are given.


Assuntos
Estudantes de Medicina , Humanos , Estudos Retrospectivos , Universidades , Currículo , Editoração
3.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796537

RESUMO

Inward rectifier potassium ion channels (IK1-channels) of the Kir2.x family are responsible for maintaining a stable negative resting membrane potential in excitable cells, but also play a role in processes of non-excitable tissues, such as bone development. IK1-channel loss-of-function, either congenital or acquired, has been associated with cardiac disease. Currently, basic research and specific treatment are hindered by the absence of specific and efficient Kir2.x channel activators. However, twelve different compounds, including approved drugs, show off-target IK1 activation. Therefore, these compounds contain valuable information towards the development of agonists of Kir channels, AgoKirs. We reviewed the mechanism of IK1 channel activation of these compounds, which can be classified as direct or indirect activators. Subsequently, we examined the most viable starting points for rationalized drug development and possible safety concerns with emphasis on cardiac and skeletal muscle adverse effects of AgoKirs. Finally, the potential value of AgoKirs is discussed in view of the current clinical applications of potentiators and activators in cystic fibrosis therapy.


Assuntos
Cardiopatias/tratamento farmacológico , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Animais , Humanos , Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/química
4.
Biomolecules ; 9(11)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731488

RESUMO

The ubiquitously expressed family of inward rectifier potassium (KIR) channels, encoded by KCNJ genes, is primarily involved in cell excitability and potassium homeostasis. Channel mutations associate with a variety of severe human diseases and syndromes, affecting many organ systems including the central and peripheral neural system, heart, kidney, pancreas, and skeletal muscle. A number of mutations associate with altered ion channel expression at the plasma membrane, which might result from defective channel trafficking. Trafficking involves cellular processes that transport ion channels to and from their place of function. By alignment of all KIR channels, and depicting the trafficking associated mutations, three mutational hotspots were identified. One localized in the transmembrane-domain 1 and immediately adjacent sequences, one was found in the G-loop and Golgi-export domain, and the third one was detected at the immunoglobulin-like domain. Surprisingly, only few mutations were observed in experimentally determined Endoplasmic Reticulum (ER)exit-, export-, or ER-retention motifs. Structural mapping of the trafficking defect causing mutations provided a 3D framework, which indicates that trafficking deficient mutations form clusters. These "mutation clusters" affect trafficking by different mechanisms, including protein stability.


Assuntos
Predisposição Genética para Doença , Canais de Potássio Corretores do Fluxo de Internalização/genética , Humanos , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/classificação , Transporte Proteico , Síndrome
5.
RSC Adv ; 9(66): 38355-38371, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35540224

RESUMO

This work presents drug-likeness and the cardiotoxicity profiles of six potent pentamidine analogs 1-6 and three new compounds 7-9 as chemotherapeutics for therapy of Pneumocystis jiroveci pneumonia. A combination of experimental and computational approaches was used in the cardiotoxicity examination. The hERG trafficking and functionality of the hERG currents were tested by western blot analyses, immunofluorescent staining procedures, and patch-clamp electrophysiological assays. Cardiotoxicity combined with blocking the hERG K+ channel was predicted, and then simulated by docking to the CSM-TM model 732 protein. Location of pentamidines in the proximity of Leu622, Thr623, Ser649, Tyr652, Ala653, and Phe656, and the high energies of interactions were in accordance with probable blocking of the hERG channel. However, in the biochemical experiments, no significant changes in I hERG densities and a minor effect on hERG maturation were observed. Predicted metabolic transformation of pentamidines with S atoms in the aliphatic linker leads to oxidation of one S atom, but those with the phenyl sulfanilide moiety can be oxidized to chinones. The tested pentamidines characterized by the presence of sulfur atoms or sulfanilide groups, have favorable drug-likeness parameters and are promising lead structures in the development of new potent chemotherapeutics against PJP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...